Chapter 2
High-Throughput Genome Assembly, Modeling, and Annotation

The sequencing of microbial genomes
containing several thousand genes and the
eventual completion of human and other
model organism genomes is the underlying
driving force for understanding biological
systems at a whole new level of complexity.
There is for the first time the potential to

scale computation to simulate their behavior.
Modeling all levels of biological complexity
is well beyond even the next generation of
Teraflop computers, but each increment in the
computing infrastructure makes it possible to
move up the biological complexity ladder and
solve previously unsolvable classes of
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The experimental (left) and computational (right) hierarchies will increasingly become
codependent as the research community models greater biological complexity.

The first step in the biological hierarchy is a
comprehensive genome-based analysis of the
rapidly emerging genomic data. With changes
in sequencing technology and methods, the
rate of acquisition of human and other genome
data over the next few years will be ~100
times higher than originally anticipated.

Assembling and interpreting these data will
require new and emerging levels of
coordination and collaboration in the genome
research community to develop the necessary
computing algorithms, data management and
visualization systems.



Annotation-  the  elucidation and
description of biologically relevant features in
the sequence- is essential in order for genome
data to be useful. The quality with which
annotation is done will have direct impact on
the value of the sequence. At a minimum, the
data must be annotated to indicate the
existence of gene coding regions and control
regions. Further annotation activities that add
value to a genome include finding simple and
complex  repeats, characterizing  the
organization of promoters and gene families,
the distribution of G+C content, and tying
together evidence for functional motifs and
homologs.

As complete genomes are sequenced,

the length of DNA comparison strings will
change from single genes to entire genomes,
with a concomitant expansion in the time to
compute. In order to look at long-range
patterns of expression, syntenic regions on the
order of 10's of megabases become reasonable
lengths for consideration. While the cycles
needed to run many of these classes of
analysis codes on rapidly increasing data sets
is in itself a significant problem, all of these
must inevitably be run on ALL data
accumulated and in a recurring manner.
Significant computational work is required to
permit the analysis and visualization of long
genomic regions needed for comparative
genomic studies.
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The Genome Channel Browser. One mechanism for researchers to access and visualize the

results of each day’s analysis of human genome data. The effort makes daily use of multiple
current high-performance computing systems to keep up with current data flow and analysis

and modeling requirements.



Methods of Genome Sequence Analysis and Modeling

A new approach to sequencing genomes,
whole genome shotgun sequencing, becomes
possible if small fragments of sequence
generated at random can be compared to each
other fast enough to effectively determine
sequence overlap and from this, assemble the
pieces into longer contiguous regions, or contigs.

The first step in the sequence reconstruction
involves finding overlaps between each fragment
and the existing contigs. The presence of
sequencing errors, natural sequence variations
between sources as well as high repetitive DNA
sequence elements make this an extremely
complex challenge. If the computation can be
performed and other significant technical
problems can be overcome, this strategy could
speed up sequencing of the human genome from
about 7 to 3 years.

As an example, the proposed whole genome
shotgun strategy at the Institute for Genome
Research (TIGR) produced 30 million bases of
DNA per day in January of 1998 which increased
to 100 million base pairs per day by mid-year. To
continue to grow the contiguous assemblies of
sequence that emerge from the random strategy
requires that each of the 200,000 fragments
generated each day be compared in a very
detailed way to all previous contigs. Particularly
in the early phases, overlaps were rare so initially
200,000 contigs per day accumulated in the
database. After enough contigs accumulated to
realize substantial overlap, the sequence
assembly required 4x10 sequence comparisons
per day, each of which requires a significant
fraction of a second on a standard processor.
While comparing new reads to existing data is
enough of a problem, periodically the entire data
structure must be rebuilt, requiring an even larger
number of FLOPs for a calculation that breaks

existing contigs down to their underlying
fragments and reassembles them
Some of the most compute intensive

processes involve the use of sequence database
information to calculate models of genes
contained in the sequence. In the last year or so,
significant growth of expressed sequence tag

(EST) collections and new types of hybrid gene
modeling methods that integrate EST data with
pattern recognition approaches, such as GRAIL-
EXP, have become available. These can be used
to produce modeling of the structure of genes in
genome sequence data in most cases, but require
significant computing power.

Nucleic acid based reference sequences
currently number about 1 million and each
putative exon (gene coding segment) must be
aligned to this database of reference DNA pieces.
GRAIL-EXP computes multiple-gene structures
on an input DNA sequence using GRAIL
predicted exons, which are most consistent with
the known ESTs/cDNA/ protein sequences.

It achieves this goal by modeling the
multiple-gene structure prediction problem as a
combinatorial optimization problem and solving
it by a dynamic programming method. The
algorithm runs in O(nM+n’K?) time, where n is
the number of predicted exons in the given DNA
sequence, M is the average time to find all the
ESTt/cDNA/proteins that match a predicted exon
from the specified databases, and K is the
maximum number of EST/cDNAs/proteins an
exon may match.

Typically, it takes about a minute to find all
the matched ESTs in the current dbEST database
(about 1.2 million entries) for a predicted exon.
Hence it may take up to a few days to find all the
matched ESTs for all the predicted exons on a
DNA of 10 million bases long. If the data rate
grows to on the order of 100 million bases per
day, the calculation would require about a month
of time for each day’s data using a single 500
megahertz processor. This is by not a one time
operation- the data needs to be reanalyzed
frequently because the underlying databases of
ESTs and cDNAs are growing rapidly. At 100
million bases per day, in ten days there is a
billion base pairs to analyze, and in 100 days 10
billion. To reanalyze this data requires about
three days on a current 1,024 node
supercomputer.  Bringing  known  protein
sequences in the protein sequence database into
the process makes the analysis much more



useful, but due to the alignment takes an order of
magnitude more time than the ESTs.
Nonetheless, this should be done routinely,
requiring about a month of time on a current
1024 node supercomputers.

The problem of parsing the predicted exons
into genes that are most consistent with known
ESTs/cDNAs/proteins, also takes significant
amount of time, which will increase as the
number of matched ESTs/CDNASs/proteins gets
larger. To process 100 megabases of sequence
will require over 10%0ps, assuming each

predicted exon has ~1000 matched ests/ cDNA/
proteins in the database on average. When the
average number of matched ESTs/cDNA/
proteins goes up to 5000, the number of needed
ops will scale to over ~10*Ops. It would also be
desirable to calculate multiple gene models for
each gene, to make each model consistent with
possible splice variants suggested by the
underlying EST evidence. This increases the
complexity of this component of the calculation
to 10'0Ops for a relatively frequently needed
operation.



Methods for Large Scale Comparison of Genome Sequences

Once the basic structure of genes has been
modeled, comparison of new sequences against
each other or existing database is one of the most
essential and  revealing  processes in
computational genomics. Such operations relate
new sequences to archival sequences that may
have meaningful information about pattems in
the sequence and its function. Such comparisons
are the starting point for the computation of
phylogenetic (evolutionary) trees of organisms or
genes, pathogenicity studies for public health,
polymorphism studies (e.g., of genetic defects),

identification of protein  motifs, model
identification for gene recognition, model
identification  for organism  classification,
functional analysis of genomic/ protein

sequences, and exon identification.

The analyses and inferencing often depend
on the quality of the computed multiple sequence
alignments (MSA's) used as input. MSA's of
biological sequences, e.g., DNA, RNA, or
protein sequences, entail the arrangement of
many (in some cases thousands) of sequences, so
that corresponding positions are aligned in
vertical columns, with padding characters (nulls)
added to compensate for length variations in
some sequences.

The most accurate and sensitive alignments
must consider gaps in the alignment (insertions
and  deletions) and are thus rather
computationally  intensive.  The  standard
algorithm for this is Smith-Waterman, which
uses dynamic programming to produce a local
optimal alignment between two sequences of
length M and N, and scales as O(MxN). The
simple extension of these algorithms to multiple
sequence alignments of K sequences requires
time O(NX). For sequence lengths in the
thousands of nucleotides, this is barely feasible
for 3 sequences, certainly not for thousands of
sequences. Hence, common practice is to use
"progressive alignments™ which is an inefficient
algorithm that adds one sequence at a time to the
MSA. This is computationally tractable, but not
optimal. It is especially problematic when the

sequences are not closely related, e.g., in
computing the Tree of Life.

Recently rediscovered Hidden Markov
Models (HMM) and Stochastic Context Free
Grammars (SCFG) offer the prospect of better
MSAs, by also modeling higher order structures.
The simplest are HMMs, which are stochastic
regular grammars. SCFGs are more complex, but
permit one to model nested structures, such as the
stem and loop structures common in RNA. More
elaborate types of grammars permit the modeling
of more complex secondary and tertiary
structures. To use these models, one must first
estimate the many parameters of the model. The
resulting model can then be used to "parse" the
sequences, and the resulting parses transformed
into multiple sequence alignments. Iterative
estimation of the Hidden Markov Models entails
iterative solution of computations akin to the
pairwise dynamic program sequence comparison
computations. At each iteration we must perform
M such O(N?) computations, one for each of the
M sequences being aligned, and sum the results.

These independent computations with each
sequence offers a clear target for parallel
computation, followed by a logarithmic
summation computation. This is particularly true
for large sequence collections such as the
ribosomal RNA alignments. Some researchers
have constructed fine-grained parallel systolic
algorithms for the dynamic programming
computations, on  specialized  hardware
implementations or SIMD machines. However,
on MIMD machines (with greater costs for
interprocessor communication and synchron-
ization) coarser partitioning of the dynamic
programming computations appears preferable.
Furthermore, these iterative computations often
find local optima, requiring  multiple
computations with different starting states to find
(putative) global optima.

One difficulty in model estimation for
methods like HMM arises from the possibility of
over-fitting the very large number of parameters
in these models (several per sequence position).
Bayesian methods have been adopted to smooth



these parameter estimates. Bayesian methods
have traditionally been difficult to compute.
Several researchers have resorted to Gibbs
sampling methods to estimate the posterior
probability distribution. These methods entail the
construction and simulation of a Markov chain
whose equilibrium probability distribution is
equal to the target posterior distribution. The
Gibbs sampling computations should be
amenable to parallelization, assuming that
independent parallel random number generators
(PRNGs) are available. This is a subject of
research activity in the Monte Carlo computation
community, and are available from several
research groups.

In the area of phylogenomics, insight from
the evolutionary relationships of the unknown
protein to others known is used to infer
something about its potential function(s). In this
approach, first, homologs of the unknown are
identified and phylogenetic tree is constructed.
Known functions of members of the group are
overlaid onto the evolutionary tree and the
function of the unknown is predicted by its
position in the tree relative to its homologs
whose functions have been characterized.

The first step in building a phylogenetic tree
is to do a multiple sequence alignment on the
homologous group of proteins. Once the
alignment has been completed tree construction
itself  presents  significant  computational
challenges. The evaluation and alignment of
multiple trees, which is important for attempting
to reconstruct the relationship among organisms
based on several trees reflecting the relationships
of groups of proteins, has been shown to be
MAX SNP-hard.

For the "Tree of Life" computations that
employ thousands of ribosomal RNA sequences,
heuristic methods are a necessity. Typical
computations with serial code run a few hundred
hours on a workstation to accurately compute a
single backbone tree of only about 100 nodes.
Computation of the backbone tree involves both
discrete optimization over the space of possible
tree topologies and parametric optimization over
the space of possible edge lengths (duration
between evolutionary events).  Likelihood

computations are used to rank the trees. The
likelihood computations are quite expensive,
involving the computation of a state-vector for
each node in the tree.

Divide and conquer strategies to partition the
computation of the entire tree are also of
interest- as the subtrees correspond to groups of
related organisms. Each such taxa is typically of
particular interest to a group of researchers.
Bootstrap methods (resampling the input data
and recomputation) can be to evaluate the
reliability of the tree. Bootstrap computations
exhibit obvious parallelism, but have previously
been computational intractable for problems on
this size. About a thousand new rRNA sequences
are added to the "Tree of Life" every year.

A number of methods exist for the
computation of phylogenetic trees. The area is
one of considerable ongoing scientific
controversy. These algorithms differ in the type
of data used (distance data between molecules vs.
aligned sequences), the existence of global
optimal tree criteria, the existence of an explicit
statistical model for the evolutionary history, etc.
Methods vary in computation time, their
consistency (convergence to correct tree with
infinite data), efficiency (rate of convergence to
correct tree with finite data), bias, robustness to
departures from assumed statistical models of
evolution.

Robustness is of particular concern because
most analyses assume (contrary to fact) that
individual sequence positions evolve
independently. Efficiency of the estimation
technique is particularly important when dealing
with phylogenies of individual genes for which
only relatively short sequences are available.
Some studies have suggested that available data
on individual genes may not be sufficient for
reliable estimation of gene phylogenies.

Many researchers believe that maximum
likelihood estimation (MLE) (or perhaps related
Bayesian approaches), offer the best prospect for
consistent, efficient estimation of phylogenetic
trees. MLE approaches also facilitate the
integration of multiple types of data (e.g.,
different sequences, restriction fragment length



polymorphism data, etc.). However, MLE (and
Bayesian) have formidable floating point
computation  and intermediate  storage
requirements (e.g., each internal node in the tree
requires storage equal to the sequence length
times the alphabet size). It is also worth noting
that the large MLE phylogeny problems have
serious  problems  with  floating  point
representation of portions of the likelihood
computations.

Clearly, some portions of the computations,
e.g., bootstrapping, clearly lend themselves to
simple cluster-based parallel processing. Finer
grained parallelism, e.g., by decomposing the
computation of individual trees, e.g., on MPPs,
has yet to be explored. There also appear to be
opportunities  for  parallelism  in  the
computationally  intensive  construction  of
multiple sequence alignments, e.g., via HMMs or
SCFGs.



Sequence Comparisons Against Model Protein Families for
Understanding Human Pathology

Searching a protein sequence database for
homologues is a powerful tool for discovering
the structure and function of a sequence.
Amongst the algorithms and tools availabe for
this task, Hidden Markov model (HMM)-based
search methods improve both the sensitivity and
selectivity of database searches by employing
position-dependent scores to characterise and
build a model for an entire family of sequences.

HMMs have been used to analyse proteins
using two complementary strategies. In the first,
a sequence is used to a search a collection of
protein families, such as Pfam, to find which of
the families it matches. In the second approach
an HMM for a family is used to search a
primary sequence database to identify additional
members of the family. The latter approach has
yielded insights into protein involved in both
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normal and abnormal human pathology such as
Fanconi Anaemia A, Gaucher disease, Krabbe

disease,  polymyositis  scleroderma  and
disaccharide intolerance II.
HMM-based analysis of the Werner

Syndrome protein sequence (WRN) suggested it
possessed exonuclease activity, and subsequent
experiments confirmed the prediction. Like
WRN, mutation of the protein encoded by the
Klotho gene lead to a syndrome with features
resembling ageing. However, Klotho is
predicted to be a member of the family 1
glycosidase (see figure). Eventually, large-scale
sequence comparisons against HMM models for
protein  families will require enormous

computational resources to find these sequence-
function correlations over genome-scale size
databases.

The similarities and differences between two plant and archael members of a family of
glycosidases that includes a protein implicated in ageing. Ribbons correspond to the beta-strands
and alpha-helices of the underlying TIM barrel (red) and family 1 glycosidase domain (cyan).
Amino acid side chains drawn in magenta, yellow and green are important for structure and/or
function. The loop in yellow denotes a region proposed to be important for substrate recognition.
The 2-deoxy-2-fluorglucosyl substrate bound at the active site of one of the enzymes is shown with
carbon atoms in grey, oxygen in red and fluorine in green.



Large-scale Calculations of Phylogenetic Trees

The calculation of phylogenetic trees is a
central approach to understanding evolutionary
history, a central problem in biology.
Phylogenetic computations are concemed with
the estimation of evolutionary trees and their
reliability, and may be done from a variety of
types of data: DNA sequences, ribosomal RNA
sequences, protein sequences, or protein
structures.

Currently construction of phylogenetic trees
commences with a multiple sequence alignment
(MSA), which is then used as input to the
phylogenetic  tree  computation.  Classical
dynamic  programming  algorithms  with
progressive alignments can be used to do the
MSAs. Hidden Markov models can improve the
quality of the sequence alignments, and
extensions to Stochastic Context Free Grammars
have the ability to identify RNA secondary
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structures such as stem and loop construction.

Estimation of the phylogenetic tree itself
involves searching the discrete topological space
of all trees of a specified size (exponential in the
number of leaves) and estimating the lengths of
each edge in the phylogenetic tree (i.e. how much
mutation occurred). Recent large phylogenetic
computations have used 10* to 10° processor
hours to explore truncated tree models.
Typically, the reliability of the trees is estimated
by performing a bootstrap computation over the
individual sequence positions/ columns). For
large computations, such as the tree of life,
bootstrapping has often not been done, due to
lack of computing resources. Speed and
availability of computer time are presently major
constraints of the ability to do these
computations, as the availability of genome
sequence data explodes.
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Two hypothetical scenarios and the path of trying to infer the function of two uncharacterized

genes in each case is traced.

(A) A gene family has undergone a gene duplication that was

accompanied by functional divergence. (B) Gene function has changed in one lineage. The genes are
referred to by numbers representing the species from which these genes come, and letters representing
different genes within a species. The thin branches in the evolutionary trees correspond to the gene
phylogeny and the thick gray branches in A (bottom) correspond to the phylogeny of the species in
which the duplicate genes evolve in parallel (as paralogs). Different symbols represent different gene
functions; gray (with hatching) represents either unknown or unpredictable functions.



The Need for High-End Computing for Genome
Modeling and Annotation

The massive scale of the data flow and challenge
of timely analysis is promoting significant
changes in the organization of genome analysis
components of the research community. A small
number of specialized centers, such as the
Genome Annotation Consortium, are emerging
to construct the codes and systems needed to
analyze the data on the scale needed for the next
phase of the biological research. These groups
are using current supercomputing capabilities on

analysis and modeling needs and are rapidly
recognizing the need for new computing
infrastructure in the imminent future. Typical
current applications, their current computational
cost and community requirements are shown in
Table I. These efforts are more and more serving
as a focus for the broader research community by
providing interface systems to access, visualize
and validate the results obtained from genome
scale computational analysis and modeling.

a continuing daily basis to keep up with current

Table I. Current and Expected Sustained Capability Requirements for Major

Communii Genomics Codes

Problem Class Sustained Capability 1999 | Sustained Capability 2000
Sequence assembly >10" flops 10" flops
Binary sequence comparison 10" flops >10™ flops
Multiple sequence comparison 10" flops >10™ flops
Gene modeling >10" flops 10" flops
Phylogeny trees 10" flops 10" flops
Protein family classification >10" flops 10" flops

Table 1 illustrates many high-priority computational challenges associated with the analysis, modeling
and annotation of genome data. The first is the basic assembly and interpretation of the sequence data
itself (analysis and annotation) as it is produced at increasing rates over the next five years. There will be
a never-ending race to keep up with this flow, estimated at about 200 million base pairs per day by some
time in 1999, and to execute the required computational codes to locate and understand the meaning of
genes, motifs, proteins, and genomes as a whole. Cataloging the flood of genes and proteins and
understanding their relationship to one another, their variation between individuals and organisms, and
evolution represents a number of very complex computational tasks. Many calculations such as
multiple sequence alignments, phylogenetic tree generation, and pedigree analysis are NP-hard
problems and cannot be currently done at the scale needed to understand the body of data being
produced, unless a variety of shortcuts is introduced. Related to this is the need to compare whole
genomes to each other on many levels both in terms of nucleic acid and proteins and on different spatial
scales. Large-scale genome comparisons will also permit biological inference of structure and function.



